Chern-Gauss-Bonnet formula for singular Yamabe metrics in dimension four

نویسندگان

چکیده

We derive a formula of Chern-Gauss-Bonnet type for the Euler characteristic four dimensional manifold-with-boundary in terms geometry Loewner-Nirenberg singular Yamabe metric prescribed conformal class. The involves renormalized volume and boundary integral. It is shown that if umbilic, then sum integral invariant. Analogous results are proved asymptotically hyperbolic metrics dimension which second elementary symmetric function eigenvalues Schouten tensor constant. Extensions generalizations these discussed. Finally, general result identifying infinitesimal anomaly an its coefficients, used to outline alternate proofs invariance plus

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Stochastic Gauss-bonnet-chern Formula

We prove that a Gaussian ensemble of smooth random sections of a real vector bundle E over compact manifold M canonically defines a metric on E together with a connection compatible with it. Additionally, we prove a refined Gauss-Bonnet theorem stating that if the bundle E and the manifold M are oriented, then the Euler form of the above connection can be identified, as a current, with the expe...

متن کامل

A graph theoretical Gauss-Bonnet-Chern Theorem

We prove a discrete Gauss-Bonnet-Chern theorem ∑ g∈V K(g) = χ(G) for finite graphs G = (V,E), where V is the vertex set and E is the edge set of the graph. The dimension of the graph, the local curvature form K and the Euler characteristic are all defined graph theoretically.

متن کامل

Moduli Spaces of Singular Yamabe Metrics

Complete, conformally flat metrics of constant positive scalar cur-vature on the complement of k points in the n-sphere, k ≥ 2, n ≥ 3, wereconstructed by R. Schoen in 1988. We consider the problem of determiningthe moduli space of all such metrics. All such metrics are asymptotically peri-odic, and we develop the linear analysis necessary to understand the nonlinearproblem. ...

متن کامل

A Gauss-Bonnet formula for closed semi-algebraic sets

We prove a Gauss-Bonnet formula for closed semi-algebraic sets.

متن کامل

The Gauss-Bonnet-Chern Theorem on Riemannian Manifolds

This expository paper contains a detailed introduction to some important works concerning the Gauss-Bonnet-Chern theorem. The study of this theorem has a long history dating back to Gauss’s Theorema Egregium (Latin: Remarkable Theorem) and culminated in Chern’s groundbreaking work [14] in 1944, which is a deep and wonderful application of Elie Cartan’s formalism. The idea and tools in [14] have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indiana University Mathematics Journal

سال: 2021

ISSN: ['1943-5258', '0022-2518', '1943-5266']

DOI: https://doi.org/10.1512/iumj.2021.70.8491